Energy-Efficient Wi-Fi

Maghsoud Morshedi EyeNetworks

- The number of Wi-Fi access points will exceed 1.5 billion devices globally by 2023.
- Wi-Fi networks can consume 4529 Tera Watt-hour (TWh) energy worldwide by 2030 [1].

[1] Andrae, Anders & Edler, Tomas. (2015). Supplement: On Global Electricity Usage of Communication Technology: Trends to 2030.

What Factors Affects Energy?

- Transmit power
- Hardware characteristics
- Operating system energy management capability
- Wireless communication parameters e.g. SNR, traffic pattern

Effect of SNR on energy consumption

Measuring energy consumption of access points

- Dynamic transmit power control (TPC)
 - Mikrotik RBD52
 - Mikrotik RB921
 - Mikrotik RBwAPG
- Static transmit power control
 - AirTies 4920
 - Zyxel B50B

Mikrotik RBD52G

AirTies 4920

Zyxel B50B

SNR vs re-transmission and TX rate

AirTies 4920

Results:

Access point	Presented experiment	The energy consumption during idle mode (Watts)	The energy consumption rise during high SNR	The energy consumption rise during low SNR	Transmit throughput with high SNR (MBps)	Transmit throughput with low SNR (MBps)
Mikrotik RBD52	One client was connected to 5GHz network	3.2	45%	80%	3	1.1
Mikrotik RBwAPG	One client was connected to 2.4 GHz network	2.9	35%	80%	2.6	0.8
Mikrotik RB921	One client was connected to 5GHz network	2.2	125%	260%	3	0.6
AirTies 4920	Two clients were connected to 2.4 GHz and 5GHz networks respectively	6.5	35%	45%	3	1
Zyxel B50B	Two clients were connected to 2.4 GHz and 5GHz networks respectively	8	25%	55%	5	1.2

Summary

- Clients in low SNR increase energy consumption of APs with dynamic TPC up to 135%.
- Clients in low SNR increase energy consumption of APs with static TPC up to 30% (because of re-transmissions)
- Excessive energy consumption of APs can reduce battery life cycle by 30%.
- Clients' SNR affects efficiency (energy and throughput) of Wi-Fi networks

