Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000	000000	0000000	0000

Crash Course in Wireless Video

Dr. Eren Soyak

Lifemote

April 24, 2018

Dr. Eren Soyak Crash Course in Wireless Video

・ロト ・回ト ・ヨト ・ヨト

э

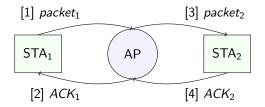
Overview	WiFi Core	WiFi Applications	Video	Loss
•0	0000000000		0000000	0000
Ludwig \	Nittgenstein			

if a lion could speak, we could not understand him

''you never help around the house''

(REASSURE ME)

- The *context* in which words are used, the intent with which they are uttered, determines their meaning.
- Successful communication is guessing which game the speaker is playing.
- What game would a lion be playing?


Overview	WiFi Core	WiFi Applications	Video	Loss
⊙●	0000000000		0000000	0000
Workshop	Overview			

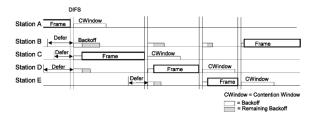
- The intent is to demystify WiFi and video
- Our goals are to get an idea about:
 - How 802.11 works
 - How WiFi might fail
 - How video compression works
 - How video over WiFi might fail

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

Overview	WiFi Core	WiFi Applications	Video	Loss
00	●000000000		0000000	0000
What is	WiFi?			

• MAC-level communication between AP-STA or STA-AP-STA

• MAC addresses, no IP info (LAN-only)

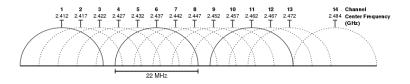

A P

(*) *) *) *)

э

Overview	WiFi Core	WiFi Applications	Video	Loss
OO	⊙●○○○○○○○○		0000000	0000
CSMA				

• WiFi devices wait for the channel to be free, back off a random amount of time, and then transmit if the channel is still free



• Video transmitters back off less than regular data

3

Overview	WiFi Core	WiFi Applications	Video	Loss
00	oo●ooooooo		0000000	0000
Channels				

- WiFi uses OFDM subcarriers across channels
- 2.4 GHz channels overlap

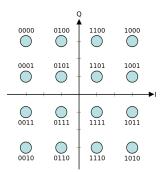
• 5 GHz channels don't overlap

[https://en.wikipedia.org/wiki/List_of_WLAN_channels, available Apr. 10 2018.]

・ロン ・四 と ・ ヨ と ・ ヨ と ・

э

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		0000000	0000
Airtime				


- STA₁ takes $\frac{b_1}{R_1}$ sec
- STA₂ takes $\frac{b_2}{R_2}$ sec
- If in total client devices exceed 100% of time, they share *time* (not *rate*) equally

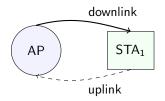
個人 くほと くほとう

э

Overview	WiFi Core	WiFi Applications	Video	Loss
oo	0000●000000		0000000	0000
MCS				

- Modulation SCoding Scheme
- Modulation: BPSK, QPSK, QAM

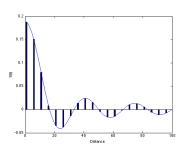
• Coding: Error control bits (redundancy 2/3, 3/4, 5/6).


э

- ₹ 🖬 🕨

- ● ● ●

Overview	WiFi Core	WiFi Applications	Video	Loss
00	00000●00000		0000000	0000
RSSI				

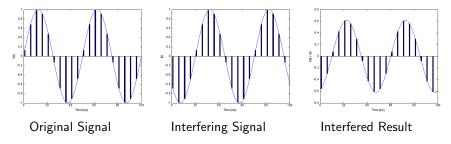

• Received Signal Strength Indication

- PHY Rate iteratively controlled, but usually closely correlated to RSSI
- Uplink usually weaker, may be very weak with TX Beamforming

Overview	WiFi Core	WiFi Applications	Video	Loss
00	000000●0000		0000000	0000
Attenuation	า			

- Attenuation can come about due to two reasons:
 - Distance (logarithmic)
 - Interposing objects (air, walls, etc.)

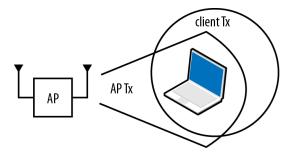
Signal attenuating over distance



Sample WiFi signal strength

▲母 ▶ ▲ 臣 ▶ ▲ 臣

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000●000		0000000	0000
Interference	9			


- Interference can come about due to various reasons
 - WiFi on overlapping channels (2.4 G)
 - Other devices (Bluetooth, Zigbee/Zwave, Baby monitors, Microwaves, DECT phones)
 - The signal interfering with itself due to *multipath*

 $\bullet\,$ Interference feature not bug when used for Beamforming $\odot\,$

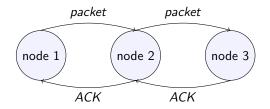
Overview	WiFi Core	WiFi Applications	Video	Loss
00	00000000●00		0000000	0000
MIMO an	d Beamforming			

- MIMO: multiple spatial streams (when RSSI good)
- STBC: single spatial stream over multiple transmitters (when RSSI poor)
- Beamforming: phase shift transmitters for maximum constructive interference at receiver

[www.safaribooksonline.com/library/view/80211n-a-survival/9781449335472/ch04.html, available Apr. 10 2018.]

Overview	WiFi Core	WiFi Applications	Video	Loss
00	00000000€0		0000000	0000
Hidden I	Nodes and Collis	sions		

• When two transmitters can't hear each other, but their intended receivers can hear both, the packets will **collide**



• Power reduction, channel change or RTS/CTS

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overview	WiFi Core	WiFi Applications	Video	Loss
00	000000000●		0000000	0000
Layer 2 v	vs Layer 4 Rate			

- TCP rate (rate user sees) is roughly 1/2 PHY rate on an empty channel
- TCP flow control meant to shelter intermediate network nodes from queue overflows

• Node 1 won't send another packet until it receives an ACK from Node 2

(人間) (人) (人) (人) (人) (人)

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000	•00000	0000000	0000
802.11g				

- Finalized 2003
- 54 Mbps (64-QAM, 20 MHz)
- 2.4GHz, 20 MHz

・ロト ・回ト ・ヨト ・ヨト

æ

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000	○●○○○○	0000000	0000
802.11n				

- Finalized 2009
- 150 Mbps per chain (64-QAM, 40 MHz)
- 65 Mbps per chain at 20 MHz
- Aggregation
- Up to 4x4 MIMO
- 2.4GHz / 40 MHz, 5 GHz / 40 MHz
- Non-standard beamforming

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		0000000	0000
802.11ac				

- Finalized 2013
- 433 Mbps per chain (256-QAM, 80 MHz)
- More aggregation
- Up to 8x8 MIMO
- No 2.4 GHz, 5 GHz / 80 MHz (160 MHz Wave 2)
- Standard beamforming

・四・・モー・ ・ モー

3

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000	000●00	0000000	0000
AP Behir	nd GW			

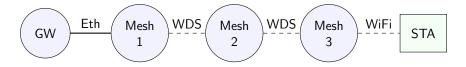
- GW provides IP's, routing
- AP connected via Ethernet, only provides WiFi access

• GW WiFi should be off: WiFi AP's within 1m of each other can blind each other even when not on same channel

同下 イヨト イヨト

-

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000	0000●0	0000000	0000
Repeater				


• Repeater connected via WiFi to GW

- If repeater too close to GW, introducing needless overhead hop
- If repeater too far from GW, that link will bottleneck all clients connected to repeater
- A DBC repeater set to repeat 2G SSID of GW is handicapped

「ア・イヨト・イヨト」

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000	00000●	0000000	0000
Mesh				

- First Mesh point connected to GW via Ethernet
- Mesh points use WDS among each other (four address space link)

• If WiFi of GW is left on, not only might it blind nearest Mesh point, but it will handicap Steering

∃ ► < ∃ ►</p>

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000	000000	●0000000	0000
Eractala				

Fractals

- Fractals are phenomena that display a repeating pattern at every scale, known as *expanding* or *evolving symmetry*.
- These forms are frequently encountered in nature and engineering.

[https://en.wikipedia.org/wiki/Fractal, available online Nov. 16 2016.]

・ロト ・回ト ・ヨト ・ヨ

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		o●oooooo	0000
Image Co	ompression			

- Image *compression* aims to reduce the amount of space needed to store a digital image.
- This is commonly done by exploiting the *spatial redundancy*.
- Intra Prediction does this by using similarity between neighboring pixels

Cameraman

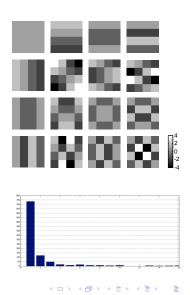
Horizontal Gradient

Vertical Gradient

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		oo●ooooo	0000
Block Codi	ng			

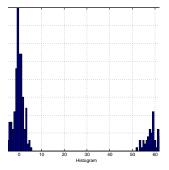
- Block coding divides the image into blocks and
 - **1** *transforms* the pixels in each block, producing *transform coefficients*
 - Q quantizes each coefficient
 - 3 writes transforms to a *bitstream* via *entropy coding*

$$I_{x,y} \rightarrow \boxed{\texttt{transform}} \rightarrow C_i \rightarrow \boxed{\texttt{quantization}} \rightarrow \hat{C_i} \rightarrow \boxed{\texttt{entropy}} \rightarrow \texttt{bits}$$

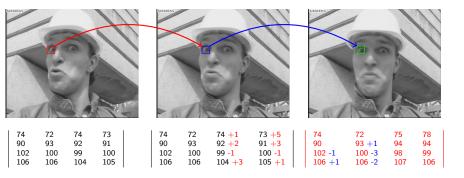

Dr. Eren Soyak Crash Course in Wireless Video

문에 비용에

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		0000000	0000
Transform	Coding			

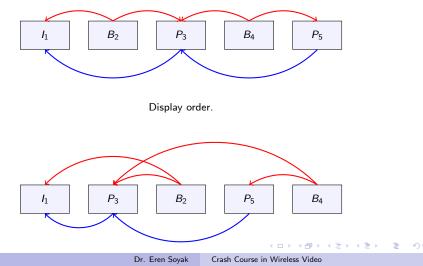

- *Transform coding* converts pixel intensities to *transform coefficients*.
- The *basis functions* of the transform are multiplied with the intensity matrix to get each coefficient value:

100	101	102	99	
102	101	11	10	
104	102	11	11	
103	104	11	13	

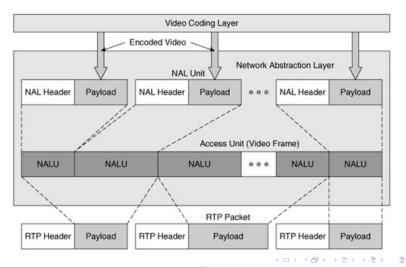

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		0000●000	0000
Quantiza	ation			

- The goal of quantization is to reduce the dynamic range of transform coefficients.
- Where the transform is reversible, quantization is the only source of distortion.
- Using a larger quantizer (i.e., dividing by a larger number) is called *coarse* quantization, and using a small quantizer *fine* quantization.

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		○○○○●○○	0000
Motion Co	ompensation			


- Motion compensation interpolates a predictor from a past (and/or future) frame based on the MV.
- Predicting from a single past frame is also called *unidirectional prediction*.

イロト イポト イヨト イヨ


Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		oooooo●o	0000
Bidirection	onal Prediction			

• Predicting from both a past frame and a future frame is called *bidirectional prediction*.

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		⊙⊙⊙⊙⊙⊙●	0000
Packetiza	ation			

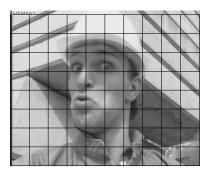
• Compressed video is packetized for network transmission

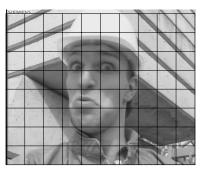
Dr. Eren Soyak Crash Course in Wireless Video

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		0000000	●000
14/1 . 11				

What Happens When Packets Are Lost

- Loss of compressed video data results in *encoder decoder mismatch* the encoder encodes something and transmits it, but the receiver never receives it, and thus can't show it. A "dropped" or broken frame will be the result.
- Worse, the encoder assumes the decoder has it, and codes future frame frames referring to it, widening the "mismatch" with each frame. Persistent "smearing" artifacts will be the result.

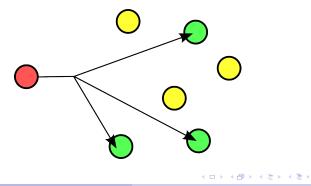

No packet losses



Mismatched decode due to packet loss

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		0000000	0●00
Concealm	ent Algorithms	5		

- Packet redundancy Adaptive Slice Ordering (ASO)
- Patterned coding (e.g., checkerboard) Flexible Macroblock Ordering (FMO)
- Joint source-channel coding Trellis Coding




・ロト ・回 ・ ・ ヨト ・

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		0000000	00●0
IPTV vs C)TT			

- OTT is simply streaming over TCP
- IPTV is multicast over UDP especially susceptible to loss
- WiFi doesn't do multicast ©
- Multicast to Unicast on root WiFi node

Overview	WiFi Core	WiFi Applications	Video	Loss
00	0000000000		0000000	000●
Rememb	er Context			

Loss is a part of life $\ensuremath{\textcircled{\sc b}}$

Dr. Eren Soyak Crash Course in Wireless Video

<ロ> <同> <同> <同> < 同> < 同> < 同> <

æ